Det:

- An <u>affine scheme</u> is a locally ringed space (X, \mathcal{O}_x) which is isomorphic to $(\operatorname{Spec} R, \mathcal{O}_{\operatorname{spec} R})$ for some hing R.
- A scheme is a locally ringed space (X, O_x) such that every point has an open heighborhood U s.t. $(U, O_x|_u)$ is an affine scheme O_x is called the <u>structure sheaf</u> of (X, O_x) (which is usually just written as X).
- A <u>morphism</u> of schemes is just a morphism of locally vinged spaces.

<u>Remark</u>: In the last section, we showed that the functor $R \mapsto (\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$ is an (anti-) equivalence of categories. That is, if we compose it with $(\operatorname{Spec} R, \mathcal{O}) \mapsto \mathcal{O}(\operatorname{Spec} R)$ we get the identity (on objects and morphisms). The "anti" means that it reverses arrows. Key takeaway: an affine scheme is "essentially the same" as a ring: it is completely determined by the ring of its global sections. Ex: If k is a field, then Speck = a point, and the structure sheaf is just O = k.

However, set $R = \frac{k(x)}{(x^2)}$. Then Spec R = a point but has a different structure sheaf.

The quotient map $R \rightarrow k$ induces the maps

$$f: Speck \rightarrow SpecR and f^{\#}: R \rightarrow k$$
.
(o) $\longmapsto (\pi)$

Define $A_{k}^{h} = \operatorname{Spec} k[x_{1}, ..., x_{n}]$ along w/its structure sheaf.

Ex:
$$A'_{\mu} = \left\{ \left(p(\pi) \right) \mid p(\pi) \text{ monic and irreducible} \right\} \cup \left\{ \left(0 \right) \right\}$$

lf f e k [x,y] irreducible, then

$$f(x,y) \in (x-a, y-b) \iff f(a,b) = 0$$

i.e. The closure of f contains the closed points corr. to points on the curve. (f) is called the generic point of the curve f(x,y)=0.

EX:
$$A_{IR}^2$$
 has additional points that have less concrete
geometric meaning. e.g. $P = (\pi^2 + y^2)$ is prime, but
 $\overline{\{P\}} = \{P, (\pi, y)\}$.

$$Q = (x^2 + 1, y)$$
 is maximal and thus closed.

Remark: If
$$a \in R$$
, note that $D(a) \subseteq SpecR$ is
itself an affine scheme: The ning map
 $R \longrightarrow R_a$

induces a morphism of affine schemes $f: \operatorname{Spec}(R_a) \longrightarrow \operatorname{Spec} R$

which is a homeomorphism onto its image, $D(a) = Spec R | V(a) = \{P \in Spec R | a \notin P \}$.

Thus, we just need that $f^{\#}$ is an isomorphism, which we can check on stalks. Take QESpec(Ra).

$$f_{p}^{\#}: R_{f(q)} \rightarrow (R_{q})_{q}$$

is an isomorphism since a & QAR. Thus, (D(a), O_{spec}R|_{D(a)}) ≃ (SpecRa, O_{spec}Ra) as loc. ringed spaces.

Glueing schemes

We can build more complicated schemes by glueing affine schemes together. More generally:

Let X_{1}, X_{2} be schemes, and $U_{1} \subseteq X_{1}, U_{2} \subseteq X_{2}$ open subsets. First note that U_{1}, U_{2} are both schemes themselves:

For $p \in U_i$, let $V \ni p$ be an affine open in X. Then $V \cap U_i$ is open and so contains a distinguished open neighborhood of p, which is also affine, by the remark above.

Suppose $\Psi: (U_1, \mathcal{O}_{X_1}|_{U_1}) \longrightarrow (U_2, \mathcal{O}_{X_2}|_{U_2})$ is an isomorphism. Then we can glue X_1 and X_2 along U_1 and U_2 to obtain a scheme X as follows:

X has underlying topological space $X_1 \cup X_2 / n_1$, where $x \sim \Psi(x)$, given the quotient topology.

For $V \subseteq X$ open, define the structure sheaf as: $\mathcal{O}_{X}(V) = \left\{ (S_{1}, S_{2}) \middle| S_{1} \in \mathcal{O}_{X_{1}}(X_{1} \cap V), S_{2} \in \mathcal{O}_{X_{2}}(X_{2} \cap V) \text{ and} \right\}$ $S_{1} \Bigl|_{u_{1} \cap V} = S_{2} \Bigl|_{u_{2} \cap V} \right\}$ Note that this is the unique sheaf s.t. $\mathcal{O}_{X}(V) = \mathcal{O}_{X_{1}}(V)$

Then (X, O_X) is a scheme. Speck[x] E_X : let $X_1 = A_k^1 = X_2$ and $U_1 = A_k^1 - \{(x)\} = U_2$.

Let $\Psi: U_1 \rightarrow U_2$ be the identity map, and let X be the scheme obtained by glueing X, and X₂ along U_1, U_2 via Ψ . This gives on affine line with a double origin:

_____ • _____

What is O(X)? $O(X) = \{(a_1, a_2) \mid a_1, a_2 \in k[x] \text{ and } a_1 \mid_{D(x)} = a_2 \mid_{D(x)} \}$ $O(D(x)) = k[x]_x \supseteq k[x], \text{ so } \frac{a_1}{1} = \frac{a_2}{1} \text{ in } k[x]_x \iff a_1 = a_2.$ Thus O(X) = k[x].

We'll come back to this example in a few weeks.